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Preface

Why is this Manual needed?

This Overtopping Manual gives guidance on analysis and/or prediction of wave
overtopping for flood defences attacked by wave action. It is primarily, but not exclusively,
intended to assist government, agencies, businesses and specialist advisors &
consultants concerned with reducing flood risk. Methods and guidance described in the
manual may also be helpful to designers or operators of breakwaters, reclamations, or
inland lakes or reservoirs

Developments close to the shoreline (coastal, estuarial or lakefront) may be exposed to
significant flood risk yet are often highly valued. Flood risks are anticipated to increase in
the future driven by projected increases of sea levels, more intense rainfall, and stronger
wind speeds. Levels of flood protection for housing, businesses or infrastructure are
inherently variable. In the Netherlands, where two-thirds of the country is below storm
surge level, large rural areas may presently (2007) be defended to a return period of
1:10,000 years, with less densely populated areas protected to 1:4,000 years. In the UK,
where low-lying areas are much smaller, new residential developments are required to be
defended to 1:200 year return.

Understanding future changes in flood risk from waves overtopping seawalls or other
structures is a key requirement for effective management of coastal defences.
Occurrences of economic damage or loss of life due to the hazardous nature of wave
overtopping are more likely, and coastal managers and users are more aware of health
and safety risks. Seawalls range from simple earth banks through to vertical concrete
walls and more complex composite structures. Each of these require different methods to
assess overtopping.

Reduction of overtopping risk is therefore a key requirement for the design, management
and adaptation of coastal structures, particularly as existing coastal infrastructure is
assessed for future conditions. There are also needs to warn or safeguard individuals
potentially to overtopping waves on coastal defences or seaside promenades, particularly
as recent deaths in the UK suggest significant lack of awareness of potential dangers.

Guidance on wave run-up and overtopping have been provided by previous manuals in
UK, Netherlands and Germany including the EA Overtopping Manual edited by Besley
(1999); the TAW Technical Report on Wave run up and wave overtopping at dikes by van
der Meer (2002); and the German Die Kiste EAK (2002). Significant new information has
now been obtained from the EC CLASH project collecting data from several nations, and
further advances from national research projects. This Manual takes account of this new
information and advances in current practice. In so doing, this manual will extend and/or
revise advice on wave overtopping predictions given in the CIRIA / CUR Rock Manual, the
Revetment Manual by McConnell (1998), British Standard BS6349, the US Coastal
Engineering Manual, and ISO TC98.

The Manual and Calculation Tool

The Overtopping Manual incorporates new techniques to predict wave overtopping at
seawalls, flood embankments, breakwaters and other shoreline structures. The manual
includes case studies and example calculations. The manual has been intended to assist
coastal engineers analyse overtopping performance of most types of sea defence found
around Europe. The methods in the manual can be used for current performance
assessments and for longer-term design calculations. The manual defines types of
structure, provides definitions for parameters, and gives guidance on how results should
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be interpreted. A chapter on hazards gives guidance on tolerable discharges and
overtopping processes. Further discussion identifies the different methods available for
assessing overtopping, such as empirical, physical and numerical techniques.

In parallel with this manual, an online Calculation Tool has been developed to assist the
user through a series of steps to establish overtopping predictions for: embankments and
dikes; rubble mound structures; and vertical structures. By selecting an indicative
structure type and key structural features, and by adding the dimensions of the geometric
and hydraulic parameters, the mean overtopping discharge will be calculated. Where
possible additional results for overtopping volumes, flow velocities and depths, and other
pertinent results will be given.

Intended use

The manual has been intended to assist engineers who are already aware of the general
principles and methods of coastal engineering. The manual uses methods and data from
research studies around Europe and overseas so readers are expected to be familiar with
wave and response parameters and the use of empirical equations for prediction. Users
may be concerned with existing defences, or considering possible rehabilitation or
new-build.

This manual is not, however, intended to cover many other aspects of the analysis,
design, construction or management of sea defences for which other manuals and
methods already exist, see for example the CIRIA / CUR / CETMEF Rock Manual (2007),
the Beach Management Manual by Brampton et al (2002) and TAW guidelines in the
Netherlands on design of sea, river and lake dikes.

What next?

It is clear that increased attention to flood risk reduction, and to wave overtopping in
particular, have increased interest and research in this area. This Manual is, therefore,
not expected to be the ‘last word’ on the subject, indeed even whilst preparing this
version, it was expected that there will be later revisions. At the time of writing this
preface (August 2007), we anticipate that there may be sufficient new research results
available to justify a further small revision of the Manual in the summer or autumn of 2008.

The Authors and Steering Committee
August 2007
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1 INTRODUCTION

11 Background

This manual describes methods to predict wave overtopping of sea defence and related
coastal or shoreline structures. It recommends approaches for calculating mean
overtopping discharges, maximum overtopping volumes and the proportion of waves
overtopping a seawall. The manual will help engineers to establish limiting tolerable
discharges for design wave conditions, and then use the prediction methods to confirm
that these discharges are not exceeded.

1.1.1 Previous and related manuals

This manual is developed from, at least in part, three manuals: the (UK) Environment
Agency Manual on Overtopping edited by Besley (1999); the (Netherlands) TAW
Technical Report on Wave run-up and wave overtopping at dikes, edited by Van der Meer
(2002); and the German Die Kiste EAK (2002) edited by Erchinger. The new combined
manual is intended to revise, extend and develop the parts of those manuals discussing
wave run-up and overtopping.

In so doing, this manual will also extend and/or revise advice on wave overtopping
predictions given in the CIRIA / CUR Rock Manual, the Revetment Manual by McConnell
(1998), British Standard BS6349, the US Coastal Engineering Manual, and ISO TC98.

1.1.2 Sources of material and contributing projects

Beyond the earlier manuals discussed in section 1.3, new methods and data have been
derived from a number of European and national research programmes. The main new
contributions to this manual have been derived from OPTICREST; PROVERBS; CLASH &
SHADOW, VOWS and Big-VOWS and partly ComCoast. Everything given in this manual
is supported by research papers and manuals described in the bibliography.

1.2 Use of this manual

The manual has been intended to assist an engineer analyse the overtopping
performance of any type of sea defence or related shoreline structure found around
Europe. The manual uses the results of research studies around Europe and further
overseas to predict wave overtopping discharges, number of overtopping waves, and the
distributions of overtopping volumes. It is envisaged that methods described here may be
used for current performance assessments, and for longer-term design calculations.
Users may be concerned with existing defences, or considering possible rehabilitation or
new-build.

The analysis methods described in this manual are primarily based upon a deterministic
approach in which overtopping discharges (or other responses) are calculated for wave
and water level conditions representing a given return period. All of the design equations
require data on water levels and wave conditions at the toe of the defence structure. The
input water level should include a tidal and, if appropriate, a surge component. Surges
are usually comprised of components including wind set-up and barometric pressure.
Input wave conditions should take account of nearshore wave transformations, including
breaking. Methods of calculating depth-limited wave conditions are outlined in Chapter 2.

All of the prediction methods given in this report have intrinsic limitations to their accuracy.
For empirical equations derived from physical model data, account should be taken of the
inherent scatter. This scatter, or reliability of the equations, has been described where
possible or available and often equations for deterministic use are given where some
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safety has been taken into account. Still it can be concluded that overtopping rates
calculated by empirically derived equations, should only be regarded as being within, at
best, a factor of 1 - 3 of the actual overtopping rate. The largest deviations will be found
for small overtopping discharges.

As however many practical structures depart (at least in part) from the idealised versions
tested in hydraulics laboratories, and it is known that overtopping rates may be very
sensitive to small variations in structure geometry, local bathymetry and wave climate,
empirical methods based upon model tests conducted on generic structural types, such as
vertical walls, armoured slopes etc may lead to large differences in overtopping
performance. Methods presented here will not predict overtopping performance with the
same degree of accuracy as structure-specific model tests.

This manual is not however intended to cover many other aspects of the analysis, design,
construction or management of sea defences for which other manuals and methods
already exist, see for example CIRIA / CUR (1991), BSI (1991), Simm et al. (1996),
Brampton et al. (2002) and TAW guidelines in the Netherlands on design of sea, river and
lake dikes. The manual has been kept deliberately concise in order to maintain clarity and
brevity. For the interested reader a full set of references is given so that the reasoning
behind the development of the recommended methods can be followed.

1.3  Principal types of structures

Wave overtopping is of principal concern for structures constructed primarily to defend
against flooding: often termed sea defence. Somewhat similar structures may also be
used to provide protection against coastal erosion: sometimes termed coast protection.
Other structures may be built to protect areas of water for ship navigation or mooring:
ports, harbours or marinas; these are often formed as breakwaters or moles. Whilst some
of these types of structures may be detached from the shoreline, sometimes termed
offshore, nearshore or detached, most of the structures used for sea defence form a part
of the shoreline.

This manual is primarily concerned with the three principal types of sea defence
structures: sloping sea dikes and embankment seawalls; armoured rubble slopes and
mounds; and vertical, battered or steep walls.

Historically, sloping dikes have been the most widely used option for sea defences along
the coasts of the Netherlands, Denmark, Germany and many parts of the UK. Dikes or
embankment seawalls have been built along many Dutch, Danish or German coastlines
protecting the land behind from flooding, and sometimes providing additional amenity
value. Similar such structures in UK may alternatively be formed by clay materials or from
a vegetated shingle ridge, in both instances allowing the side slopes to be steeper. All
such embankments will need some degree of protection against direct wave erosion,
generally using a revetment facing on the seaward side. Revetment facing may take
many forms, but may commonly include closely-fitted concrete blockwork, cast in-situ
concrete slabs, or asphaltic materials. Embankment or dike structures are generally most
common along rural frontages.

A second type of coastal structure consists of a mound or layers of quarried rock fill,
protected by rock or concrete armour units. The outer armour layer is designed to resist
wave action without significant displacement of armour units. Under-layers of quarry or
crushed rock support the armour and separate it from finer material in the embankment or
mound. These porous and sloping layers dissipate a proportion of the incident wave
energy in breaking and friction. Simplified forms of rubble mounds may be used for rubble
seawalls or protection to vertical walls or revetments. Rubble mound revetments may
also be used to protect embankments formed from relict sand dunes or shingle ridges.
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Rubble mound structures tend to be more common in areas where harder rock is
available.

Along urban frontages, especially close to ports, erosion or flooding defence structures
may include vertical (or battered / steep) walls. Such walls may be composed of stone or
concrete blocks, mass concrete, or sheet steel piles. Typical vertical seawall structures
may also act as retaining walls to material behind. Shaped and recurved wave return
walls may be formed as walls in their own right, or smaller versions may be included in
sloping structures. Some coastal structures are relatively impermeable to wave action.
These include seawalls formed from blockwork or mass concrete, with vertical, near
vertical, or steeply sloping faces. Such structures may be liable to intense local wave
impact pressures, may overtop suddenly and severely, and will reflect much of the
incident wave energy. Reflected waves cause additional wave disturbance and/or may
initiate or accelerate local bed scour.

1.4 Definitions of key parameters and principal responses

Overtopping discharge occurs because of waves running up the face of a seawall. If
wave run-up levels are high enough water will reach and pass over the crest of the wall.
This defines the ‘green water’ overtopping case where a continuous sheet of water passes
over the crest. In cases where the structure is vertical, the wave may impact against the
wall and send a vertical plume of water over the crest.

A second form of overtopping occurs when waves break on the seaward face of the
structure and produce significant volumes of splash. These droplets may then be carried
over the wall either under their own momentum or as a consequence of an onshore wind.

Another less important method by which water may be carried over the crest is in the form
of spray generated by the action of wind on the wave crests immediately offshore of the
wall. Even with strong wind the volume is not large and this spray will not contribute to
any significant overtopping volume.

Overtopping rates predicted by the various empirical formulae described within this report
will include green water discharges and splash, since both these parameters were
recorded during the model tests on which the prediction methods are based. The effect of
wind on this type of discharge will not have been modelled. Model tests suggest that
onshore winds have little effect on large green water events, however they may increase
discharges under 1 I/s/m. Under these conditions, the water overtopping the structure is
mainly spray and therefore the wind is strong enough to blow water droplets inshore.

In the list of symbols, short definitions of the parameters used have been included. Some
definitions are so important that they are explained separately in this section as key
parameters. The definitions and validity limits are specifically concerned with application
of the given formulae. In this way, a structure section with a slope of 1:12 is not
considered as a real slope (too gentle) and it is not a real berm too (too steep). In such a
situation, wave run-up and overtopping can only be calculated by interpolation. For
example, for a section with a slope of 1:12, interpolation can be made between a slope of
1:8 (mildest slope) and a 1:15 berm (steepest berm).

1.4.1 Wave height

The wave height used in the wave run-up and overtopping formulae is the incident
significant wave height H.,o at the toe of the structure, called the spectral wave height,
Hmo = 4(mo)”.  Another definition of significant wave height is the average of the highest
third of the waves, Hy;3. This wave height is, in principle, not used in this manual, unless
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formulae were derived on basis of it. In deep water, both definitions produce almost the
same value, but situations in shallow water can lead to differences of 10-15%.

In many cases, a foreshore is present on which waves can break and by which the
significant wave height is reduced. There are models that in a relatively simple way can
predict the reduction in energy from breaking of waves and thereby the accompanying
wave height at the toe of the structure. The wave height must be calculated over the total
spectrum including any long-wave energy present.

Based on the spectral significant wave height, it is reasonably simple to calculate a wave
height distribution and accompanying significant wave height Hq; using the method of
Battjes and Groenendijk (2000).

1.4.2 Wave period

Various wave periods can be 